Esteroides para caballos de coleo

Methandienone, methandriol, and oxymetholone, which are anabolic steroids possessing 17alpha-methyl and 17beta-hydroxy groups, were developed as oral formulations for therapeutic purposes. However, they have been used in racehorses to enhance racing performance. In humans, it has been reported that structurally related anabolic steroids having the 17alpha-methyl and 17beta-hydroxy groups, including 17alpha-methyltestosterone, mestanolone, methandienone, methandriol, and oxymetholone, have metabolites in common. In this study, we found that metabolites common to those of 17alpha-methyltestosterone and mestanolone were detected in horse urine after the administration of oxymetholone, methandienone, and methandriol. Based on analytical data, we confirmed these to be the common metabolites of five structurally related steroids, 17alpha-methyltestosterone, mestanolone, oxymetholone, methandienone, and methandriol. Furthermore, we detected hitherto unknown urinary metabolites of methandriol and oxymetholone in horses. The parent steroid itself was detected in horse urine after the administration of methandriol, other than metabolites common to 17alpha-methyltestosterone and mestanolone. On the other hand, the major metabolite of oxymetholone was mestanolone, aside from metabolites presumed to be the stereoisomers of 2-hydroxymethyl-17alpha-methyl-5alpha-androstan-3,17beta-diol and 2,17alpha-di(hydroxymethyl)-5alpha-androstan-3,17beta-diol. The simultaneous detection of common metabolites and other main metabolites would help us narrow down the candidate-administered steroid for the doping tests in racehorses.

The fight against doping in sport using analytical chemistry is a mature area with a history of approximately 100 years in horseracing. In common with human sport, anabolic/androgenic steroids (AASs) are an important group of potential doping agents. Particular issues with their detection are extensive metabolism including both phase I and phase II. A number of the common AASs are also endogenous to the equine. A further issue is the large number of synthetic steroids produced as pharmaceutical products or as 'designer' drugs intended to avoid detection or for the human supplement market. An understanding of the metabolism of AASs is vital to the development of effective detection methods for equine sport. The aim of this paper is to review current knowledge of the metabolism of appropriate steroids, the current approaches to their detection in equine sport and future trends that may affect equine dope testing.

Esteroides para caballos de coleo

esteroides para caballos de coleo


esteroides para caballos de coleoesteroides para caballos de coleoesteroides para caballos de coleoesteroides para caballos de coleoesteroides para caballos de coleo